companydirectorylist.com  全球商業目錄和公司目錄
搜索業務,公司,産業 :


國家名單
美國公司目錄
加拿大企業名單
澳洲商業目錄
法國公司名單
意大利公司名單
西班牙公司目錄
瑞士商業列表
奧地利公司目錄
比利時商業目錄
香港公司列表
中國企業名單
台灣公司列表
阿拉伯聯合酋長國公司目錄


行業目錄
美國產業目錄












Canada-0-ALUMINUM 公司名錄

企業名單和公司名單:
01 COMMUNIQUE LABORATORIES
公司地址:  1450 Meyerside Dr,MISSISSAUGA,ON,Canada
郵政編碼:  L5T
電話號碼:  9057958322
傳真號碼:  
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  Motorcycles & Motor Scooters-D
銷售收入:  $1 to 2.5 million
員工人數:  1 to 4
信用報告:  Unknown
聯繫人:  

02 KIOSK PROMOTIONS
公司地址:  6551 No 3 Rd,RICHMOND,BC,Canada
郵政編碼:  V7A
電話號碼:  6042070477
傳真號碼:  6042738947
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  Womens Apparel-Retail
銷售收入:  $2.5 to 5 million
員工人數:  20 to 49
信用報告:  Good
聯繫人:  

057305 NB LTD
公司地址:  3 Av Fallsview,SAINT JOHN,NB,Canada
郵政編碼:  E2K
電話號碼:  5066329626
傳真號碼:  
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  MASSAGE THERAPY & THERAPISTS
銷售收入:  
員工人數:  
信用報告:  
聯繫人:  

1 FOR 1 PIZZA
公司地址:  911 Richmond Rd,OTTAWA,ON,Canada
郵政編碼:  K2A
電話號碼:  6137283100
傳真號碼:  
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  Restaurants
銷售收入:  $500,000 to $1 million
員工人數:  10 to 19
信用報告:  Good
聯繫人:  

美國SIC代碼:  0
美國的SIC目錄:  Meat For Freezers
1 HOUR PHOTO RAPID IMAGES
公司地址:  South Common Mall,MISSISSAUGA,ON,Canada
郵政編碼:  L4T
電話號碼:  9058280144
傳真號碼:  
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  Leather Cleaning
銷售收入:  Less than $500,000
員工人數:  5 to 9
信用報告:  Unknown
聯繫人:  

1 MARQUEE ENTERPRISES
公司地址:  640 Windmill Rd,DARTMOUTH,NS,Canada
郵政編碼:  B3B
電話號碼:  9024681630
傳真號碼:  
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  DIGITAL IMAGING SERVICE
銷售收入:  
員工人數:  
信用報告:  
聯繫人:  

1 STEP STORAGE LTD
公司地址:  5051 Calder Crt,RICHMOND,BC,Canada
郵政編碼:  V7C
電話號碼:  6042040001
傳真號碼:  
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  
銷售收入:  
員工人數:  
信用報告:  
聯繫人:  

1-800 GOT JUNK
公司地址:  2473 Sheffield Rd,ORLEANS,ON,Canada
郵政編碼:  K1C
電話號碼:  6138415954
傳真號碼:  
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  Freight-Forwarding
銷售收入:  $500,000 to $1 million
員工人數:  5 to 9
信用報告:  Good
聯繫人:  

1-888-ROSE INC
公司地址:  8407 Argyll Rd NW,EDMONTON,AB,Canada
郵政編碼:  T6C
電話號碼:  7804392848
傳真號碼:  7804524980
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  Environmental & Ecological Ser
銷售收入:  $1 to 2.5 million
員工人數:  5 to 9
信用報告:  Unknown
聯繫人:  

10 FRIENDS DINER
公司地址:  4141 Tecumseh Rd E,WINDSOR,ON,Canada
郵政編碼:  N8W
電話號碼:  5192543000
傳真號碼:  
免費電話號碼:  
手機號碼:  
網址:  
電子郵件:  
美國SIC代碼:  0
美國的SIC目錄:  
銷售收入:  
員工人數:  
信用報告:  
聯繫人:  

Show 1-11 record,Total 600 record
First Pre [1 2 3 4 5 6 7 8 9 10] Next Last  Goto,Total 55 Page










公司新聞:
  • What is the difference between a convolutional neural network and a . . .
    A CNN, in specific, has one or more layers of convolution units A convolution unit receives its input from multiple units from the previous layer which together create a proximity Therefore, the input units (that form a small neighborhood) share their weights The convolution units (as well as pooling units) are especially beneficial as:
  • What are the features get from a feature extraction using a CNN?
    By accessing these high-level features, you essentially have a more compact and meaningful representation of what the image represents (based always on the classes that the CNN has been trained on) By visualizing the activations of these layers we can take a look on what these high-level features look like
  • machine learning - What is a fully convolution network? - Artificial . . .
    A fully convolutional network is achieved by replacing the parameter-rich fully connected layers in standard CNN architectures by convolutional layers with $1 \times 1$ kernels I have two questions What is meant by parameter-rich? Is it called parameter rich because the fully connected layers pass on parameters without any kind of "spatial
  • Extract features with CNN and pass as sequence to RNN
    $\begingroup$ But if you have separate CNN to extract features, you can extract features for last 5 frames and then pass these features to RNN And then you do CNN part for 6th frame and you pass the features from 2,3,4,5,6 frames to RNN which is better The task I want to do is autonomous driving using sequences of images
  • In a CNN, does each new filter have different weights for each input . . .
    Typically for a CNN architecture, in a single filter as described by your number_of_filters parameter, there is one 2D kernel per input channel There are input_channels * number_of_filters sets of weights, each of which describe a convolution kernel So the diagrams showing one set of weights per input channel for each filter are correct
  • What is the fundamental difference between CNN and RNN?
    A CNN will learn to recognize patterns across space while RNN is useful for solving temporal data problems CNNs have become the go-to method for solving any image data challenge while RNN is used for ideal for text and speech analysis
  • When training a CNN, what are the hyperparameters to tune first?
    Firstly when you say an object detection CNN, there are a huge number of model architectures available Considering that you have narrowed down on your model architecture a CNN will have a few common layers like the ones below with hyperparameters you can tweak: Convolution Layer:- number of kernels, kernel size, stride length, padding
  • convolutional neural networks - When to use Multi-class CNN vs. one . . .
    I'm building an object detection model with convolutional neural networks (CNN) and I started to wonder when should one use either multi-class CNN or a single-class CNN That is, if I'm making e g a
  • How to handle rectangular images in convolutional neural networks . . .
    Almost all the convolutional neural network architecture I have come across have a square input size of an image, like $32 \\times 32$, $64 \\times 64$ or $128 \\times 128$ Ideally, we might not have a




企業名錄,公司名錄
企業名錄,公司名錄 copyright ©2005-2012 
disclaimer